Copied to
clipboard

G = C42.21Q8order 128 = 27

21st non-split extension by C42 of Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.21Q8, C42.420D4, C42.631C23, C4⋊C8.13C4, C81C814C2, C82C810C2, C4.47(C8○D4), C22⋊C8.13C4, (C22×C4).32Q8, C4⋊C8.219C22, C23.21(C4⋊C4), (C4×C8).102C22, C42.127(C2×C4), (C22×C4).251D4, C4.10(C8.C4), C4.140(C8⋊C22), C4.134(C8.C22), C4⋊M4(2).25C2, (C2×C42).230C22, C2.6(M4(2)⋊C4), C42.12C4.31C2, C2.9(C42.6C22), (C2×C4).77(C4⋊C4), (C2×C8).101(C2×C4), C22.88(C2×C4⋊C4), (C2×C4).158(C2×Q8), (C2×C4).1467(C2×D4), C2.10(C2×C8.C4), (C22×C4).252(C2×C4), (C2×C4).513(C22×C4), SmallGroup(128,306)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.21Q8
C1C2C22C2×C4C42C2×C42C42.12C4 — C42.21Q8
C1C2C2×C4 — C42.21Q8
C1C2×C4C2×C42 — C42.21Q8
C1C22C22C42 — C42.21Q8

Generators and relations for C42.21Q8
 G = < a,b,c,d | a4=b4=1, c4=a2, d2=a2bc2, ab=ba, cac-1=ab2, ad=da, bc=cb, dbd-1=a2b, dcd-1=c3 >

Subgroups: 124 in 79 conjugacy classes, 48 normal (32 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C23, C42, C2×C8, C2×C8, M4(2), C22×C4, C4×C8, C4×C8, C22⋊C8, C22⋊C8, C4⋊C8, C4⋊C8, C4⋊C8, C2×C42, C2×M4(2), C82C8, C81C8, C4⋊M4(2), C42.12C4, C42.21Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, C8.C4, C2×C4⋊C4, C8○D4, C8⋊C22, C8.C22, C42.6C22, M4(2)⋊C4, C2×C8.C4, C42.21Q8

Smallest permutation representation of C42.21Q8
On 64 points
Generators in S64
(1 7 5 3)(2 45 6 41)(4 47 8 43)(9 23 13 19)(10 12 14 16)(11 17 15 21)(18 20 22 24)(25 62 29 58)(26 28 30 32)(27 64 31 60)(33 39 37 35)(34 52 38 56)(36 54 40 50)(42 48 46 44)(49 55 53 51)(57 59 61 63)
(1 33 46 53)(2 34 47 54)(3 35 48 55)(4 36 41 56)(5 37 42 49)(6 38 43 50)(7 39 44 51)(8 40 45 52)(9 64 21 29)(10 57 22 30)(11 58 23 31)(12 59 24 32)(13 60 17 25)(14 61 18 26)(15 62 19 27)(16 63 20 28)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 32 39 10 42 63 55 18)(2 27 40 13 43 58 56 21)(3 30 33 16 44 61 49 24)(4 25 34 11 45 64 50 19)(5 28 35 14 46 59 51 22)(6 31 36 9 47 62 52 17)(7 26 37 12 48 57 53 20)(8 29 38 15 41 60 54 23)

G:=sub<Sym(64)| (1,7,5,3)(2,45,6,41)(4,47,8,43)(9,23,13,19)(10,12,14,16)(11,17,15,21)(18,20,22,24)(25,62,29,58)(26,28,30,32)(27,64,31,60)(33,39,37,35)(34,52,38,56)(36,54,40,50)(42,48,46,44)(49,55,53,51)(57,59,61,63), (1,33,46,53)(2,34,47,54)(3,35,48,55)(4,36,41,56)(5,37,42,49)(6,38,43,50)(7,39,44,51)(8,40,45,52)(9,64,21,29)(10,57,22,30)(11,58,23,31)(12,59,24,32)(13,60,17,25)(14,61,18,26)(15,62,19,27)(16,63,20,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,32,39,10,42,63,55,18)(2,27,40,13,43,58,56,21)(3,30,33,16,44,61,49,24)(4,25,34,11,45,64,50,19)(5,28,35,14,46,59,51,22)(6,31,36,9,47,62,52,17)(7,26,37,12,48,57,53,20)(8,29,38,15,41,60,54,23)>;

G:=Group( (1,7,5,3)(2,45,6,41)(4,47,8,43)(9,23,13,19)(10,12,14,16)(11,17,15,21)(18,20,22,24)(25,62,29,58)(26,28,30,32)(27,64,31,60)(33,39,37,35)(34,52,38,56)(36,54,40,50)(42,48,46,44)(49,55,53,51)(57,59,61,63), (1,33,46,53)(2,34,47,54)(3,35,48,55)(4,36,41,56)(5,37,42,49)(6,38,43,50)(7,39,44,51)(8,40,45,52)(9,64,21,29)(10,57,22,30)(11,58,23,31)(12,59,24,32)(13,60,17,25)(14,61,18,26)(15,62,19,27)(16,63,20,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,32,39,10,42,63,55,18)(2,27,40,13,43,58,56,21)(3,30,33,16,44,61,49,24)(4,25,34,11,45,64,50,19)(5,28,35,14,46,59,51,22)(6,31,36,9,47,62,52,17)(7,26,37,12,48,57,53,20)(8,29,38,15,41,60,54,23) );

G=PermutationGroup([[(1,7,5,3),(2,45,6,41),(4,47,8,43),(9,23,13,19),(10,12,14,16),(11,17,15,21),(18,20,22,24),(25,62,29,58),(26,28,30,32),(27,64,31,60),(33,39,37,35),(34,52,38,56),(36,54,40,50),(42,48,46,44),(49,55,53,51),(57,59,61,63)], [(1,33,46,53),(2,34,47,54),(3,35,48,55),(4,36,41,56),(5,37,42,49),(6,38,43,50),(7,39,44,51),(8,40,45,52),(9,64,21,29),(10,57,22,30),(11,58,23,31),(12,59,24,32),(13,60,17,25),(14,61,18,26),(15,62,19,27),(16,63,20,28)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,32,39,10,42,63,55,18),(2,27,40,13,43,58,56,21),(3,30,33,16,44,61,49,24),(4,25,34,11,45,64,50,19),(5,28,35,14,46,59,51,22),(6,31,36,9,47,62,52,17),(7,26,37,12,48,57,53,20),(8,29,38,15,41,60,54,23)]])

38 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E···4L4M8A···8P8Q8R8S8T
order1222244444···448···88888
size1111411112···244···48888

38 irreducible representations

dim111111122222244
type++++++-+-+-
imageC1C2C2C2C2C4C4D4Q8D4Q8C8.C4C8○D4C8⋊C22C8.C22
kernelC42.21Q8C82C8C81C8C4⋊M4(2)C42.12C4C22⋊C8C4⋊C8C42C42C22×C4C22×C4C4C4C4C4
# reps122124411118811

Matrix representation of C42.21Q8 in GL4(𝔽17) generated by

13000
01300
0010
00016
,
1000
01600
00130
00013
,
2000
0800
0001
0010
,
0100
13000
0090
0009
G:=sub<GL(4,GF(17))| [13,0,0,0,0,13,0,0,0,0,1,0,0,0,0,16],[1,0,0,0,0,16,0,0,0,0,13,0,0,0,0,13],[2,0,0,0,0,8,0,0,0,0,0,1,0,0,1,0],[0,13,0,0,1,0,0,0,0,0,9,0,0,0,0,9] >;

C42.21Q8 in GAP, Magma, Sage, TeX

C_4^2._{21}Q_8
% in TeX

G:=Group("C4^2.21Q8");
// GroupNames label

G:=SmallGroup(128,306);
// by ID

G=gap.SmallGroup(128,306);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,64,1059,184,1123,136,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=a^2,d^2=a^2*b*c^2,a*b=b*a,c*a*c^-1=a*b^2,a*d=d*a,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽